Regulation of gut luminal serotonin by commensal microbiota in mice

نویسندگان

  • Tomokazu Hata
  • Yasunari Asano
  • Kazufumi Yoshihara
  • Tae Kimura-Todani
  • Noriyuki Miyata
  • Xue-Ting Zhang
  • Shu Takakura
  • Yuji Aiba
  • Yasuhiro Koga
  • Nobuyuki Sudo
چکیده

Gut lumen serotonin (5-hydroxytryptamine: 5-HT) contributes to several gastrointestinal functions such as peristaltic reflexes. 5-HT is released from enterochromaffin (EC) cells in response to a number of stimuli, including signals from the gut microbiota. However, the specific mechanism by which the gut microbiota regulates 5-HT levels in the gut lumen has not yet been clarified. Our previous work with gnotobiotic mice showed that free catecholamines can be produced by the deconjugation of conjugated catecholamines; hence, we speculated that deconjugation by bacterial enzymes may be one of the mechanisms whereby gut microbes can produce free 5-HT in the gut lumen. In this study, we tested this hypothesis using germ-free (GF) mice and gnotobiotic mice recolonized with specific pathogen-free (SPF) fecal flora (EX-GF). The 5-HT levels in the lumens of the cecum and colon were significantly lower in the GF mice than in the EX-GF mice. Moreover, these levels were rapidly increased, within only 3 days after exposure to SPF microbiota. The majority of 5-HT was in an unconjugated, free form in the EX-GF mice, whereas approximately 50% of the 5-HT was found in the conjugated form in the GF mice. These results further support the current view that the gut microbiota plays a crucial role in promoting the production of biologically active, free 5-HT. The deconjugation of glucuronide-conjugated 5-HT by bacterial enzymes is likely one of the mechanisms contributing to free 5-HT production in the gut lumen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction between Intestinal Microbiota and Serotonin Metabolism

Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...

متن کامل

Role of Microbiota in Strengthening Ocular Mucosal Barrier Function Through Secretory IgA

Purpose The purpose of this study was to evaluate mechanisms controlling secretory IgA (SIgA) production, thereby ensuring maintenance of ocular surface health. Methods To determine whether the presence of specific gut commensal species regulates SIgA levels and IgA transcripts in the eye-associated lymphoid tissues (EALT), specific-pathogen-free (SPF) Swiss Webster (SW) mice were treated wit...

متن کامل

Prion disease pathogenesis in the absence of the commensal microbiota

Prion diseases are a unique group of transmissible, typically sub-acute, neurodegenerative disorders. During central nervous system (CNS) prion disease, the microglia become activated and are thought to provide a protective response by scavenging and clearing prions. The mammalian intestine is host to a large burden of commensal micro-organisms, especially bacteria, termed the microbiota. The c...

متن کامل

Regulation of the gut microbiota by the mucosal immune system in mice.

The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed ...

متن کامل

Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat.

Gut microbiota colonization is a key event for host physiology that occurs early in life. Disruption of this process leads to altered brain development which ultimately manifests as changes in brain function and behaviour in adulthood. Studies using germ-free (GF) mice highlight the extreme impact on brain health that results from life without commensal microbes. However, the impact of microbio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017